SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "LAR1:slu ;conttype:(refereed);pers:(Strandberg Erling);pers:(De Koning Dirk Jan)"

Sökning: LAR1:slu > Refereegranskat > Strandberg Erling > De Koning Dirk Jan

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mohammed Abdallah, Sallam, et al. (författare)
  • Across-countries genomic prediction using national breeding values or multitrait across-countries evaluation breeding values
  • 2022
  • Ingår i: Journal of Dairy Science. - : American Dairy Science Association. - 0022-0302 .- 1525-3198. ; 105, s. 3282-3295
  • Tidskriftsartikel (refereegranskat)abstract
    • In across-country genomic predictions for dairy cattle, 2 kinds of bull information can be used as dependent variables. The first is estimated breeding value (EBV) from the national genetic evaluations, assuming genetic correlations between countries are less than 1. The second is EBV from multitrait across-countries evaluation (MACE), assuming genetic correlations between countries equal 1. In the present study, the level of bias and reliability of a cross-countries genomic prediction using national EBV or MACE EBV as the dependent variable were investigated. Data from Brown Swiss Organizations joining the InterGenomics Service by Inter bull Centre (Uppsala, Sweden) were used. National and MACE EBV of 3 traits (protein yield, cow conception rate, and calving interval) from 7, 5, and 4 countries, respectively, were used, resulting in 16 trait-country combinations. Genotypes for 45,473 SNP markers and deregressed (national or MACE) EBV of 7,490; 5,833; and 5,177 bulls were used in analysis of protein yield, cow conception rate, and calving interval, respectively. For most of trait-country combinations, the use of MACE EBV via single-trait approach resulted in less biased and more reliable across-countries genomic predictions. In case some of the MACE EBV might have been inflated, the resulting single-trait genomic predictions were inflated as well. For these specific cases, the use of national EBV via multitrait approach provided less bias and more reliable across-countries genomic predictions.
  •  
2.
  • Tenghe, Amabel, et al. (författare)
  • Genome-wide association study for endocrine fertility traits using single nucleotide polymorphism arrays and sequence variants in dairy cattle
  • 2016
  • Ingår i: Journal of Dairy Science. - : American Dairy Science Association. - 0022-0302 .- 1525-3198. ; 99, s. 5470-5485
  • Tidskriftsartikel (refereegranskat)abstract
    • Endocrine fertility traits, which are defined from progesterone concentration levels in milk, are interesting indicators of dairy cow fertility because they more directly reflect the cows own reproductive physiology than classical fertility traits, which are more biased by farm management decisions. The aim of this study was to detect quantitative trait loci (QTL) for 7 endocrine fertility traits in dairy cows by performing a genomewide association study with 85k single nucleotide polymorphisms (SNP), and then fine-map targeted QTL regions, using imputed sequence variants. Two classical fertility traits were also analyzed for QTL with 85k SNP. The association between a SNP and a phenotype was assessed by single-locus regression for each SNP, using a linear mixed model that included a random polygenic effect. A total of 2,447 Holstein Friesian cows with 5,339 lactations with both phenotypes and genotypes were used for association analysis. Heritability estimates ranged from 0.09 to 0.15 for endocrine fertility traits and 0.03 to 0.10 for classical fertility traits. The genome-wide association study identified 17 QTL regions for endocrine fertility traits on Bos taurus autosomes (BTA) 2, 3, 8, 12, 15, 17, 23, and 25. The highest number (5) of QTL regions from the genome-wide association study was identified for the endocrine trait "proportion of samples with luteal activity." Overlapping QTL regions were found between endocrine traits on BTA 2, 3, and 17. For the classical trait calving to first service, 3 QTL regions were identified on BTA 3, 15, and 23, and an overlapping region was identified on BTA 23 with endocrine traits. Fine-mapping target regions for the endocrine traits on BTA 2 and 3 using imputed sequence variants confirmed the QTL from the genome-wide association study, and identified several associated variants that can contribute to an index of markers for genetic improvement of fertility. Several potential candidate genes underlying endocrine fertility traits were also identified in the target regions and are discussed. However, due to high linkage disequilibrium, it was not possible to specify genes or polymorphisms as causal factors for any of the regions. Key words: quantitative trait loci, milk progesterone, dairy cattle, fertility.
  •  
3.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy